Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

Ä¡ÁÖ Á¶Á÷ Àç»ýÀ» À§ÇÑ 3D ÇÁ¸°ÅÍ·Î Á¦ÀÛµÈ Èí¼ö¼º Â÷Æó¸·ÀÇ ¹°¸®Àû ¹× »ýºÐÇؼº Ư¼º

Physical and biodegradable properties of 3D printed resorbable membranes for periodontal guided tissue regenerations

´ëÇÑÄ¡°úÀç·áÇÐȸÁö 2021³â 48±Ç 2È£ p.89 ~ 98
°íÇýºó, ¼­°æÁø, õ¿¬¿í, À̽¿ø, À¯¼º¹Î, ÀÓ¹ü¼ø, ±ÇÀ缺,
¼Ò¼Ó »ó¼¼Á¤º¸
°íÇýºó ( Go Hye-Bin ) - Yonsei University College of Dentistry Department of Dental Biomaterials and Bioengineering
¼­°æÁø ( Seo Kyoung-Jin ) - Yonsei University College of Dentistry Department of Dental Biomaterials and Bioengineering
õ¿¬¿í ( Chun Youn-Wook ) - Korea Conformity Laboratories
À̽¿ø ( Lee Seung-Won ) - Korea Conformity Laboratories
À¯¼º¹Î ( You Sung-Min ) - Korea Conformity Laboratories
ÀÓ¹ü¼ø ( Lim Bum-Soon ) - Seoul National University School of Dentistry Department of Dental Biomaterials Science
±ÇÀ缺 ( Kwon Jae-Sung ) - Yonsei University College of Dentistry Department of Dental Biomaterials and Bioengineering

Abstract

º» ¿¬±¸ÀÇ ¸ñÀûÀº Ä¡ÁÖ Á¶Á÷ÀÇ À¯µµ Àç»ý¿¡ »ç¿ëµÇ´Â 3D ÇÁ¸°ÅÍ·Î Á¦ÀÛµÈ Èí¼ö¼º Â÷Æó¸·ÀÇ ¹°¸®Àû ¹× »ýºÐÇؼº Ư¼ºÀ» ºñ±³ÇÏ´Â °ÍÀ̾ú´Ù. ¼¼ °¡Áö À¯ÇüÀÇ 3D ÇÁ¸°ÅÍ·Î Á¦ÀÛµÈ Èí¼ö¼º Â÷Æó¸·(¥â-TCP°¡ ÇÔÀ¯µÇÁö ¾ÊÀº Á¦Ç° 2Á¾°ú ¥â-TCP°¡ ÇÔÀ¯µÈ Á¦Ç° 1Á¾)ÀÌ °í·ÁµÇ¾ú´Ù. 3D ÇÁ¸°ÅÍ·Î Á¦ÀÛµÈ Èí¼ö¼º Â÷Æó¸·ÀÇ ÇüÅÂ¿Í ¼ººÐ ±¸¼ºÀº EDS (energydispersive X-ray spectroscopy)¿Í ÇÔ²² ÁÖ»ç ÀüÀÚ Çö¹Ì°æ(FE-SEM)À¸·Î ºÐ¼®µÇ¾ú´Ù. ±â°øµµ ¹× ±â°ø Å©±â´Â Micro-CT¸¦ »ç¿ëÇÏ¿© ÃøÁ¤ÇÏ¿´´Ù. ¶ÇÇÑ ÀÎÀå °­µµ, »ýºÐÇؼº ½ÃÇèÀÌ ¼öÇàµÇ¾ú´Ù. Åë°èÀû ºÐ¼®Àº ÀÎÀå °­µµ¿¡¼­ ÀÏ¿ø¹èÄ¡ºÐ»êºÐ¼® (one-way ANOVA)À» ½ÃÇàÇÏ¿´°í, »çÈĺм®À¸·Î Tukey¡¯s test¸¦ ½ÃÇàÇÏ¿´´Ù(p<0.05). EDS ºÐ¼®À» ÅëÇÑ SEM À̹ÌÁöÀÇ °á°ú´Â ¸ðµç ±×·ì¿¡¼­ C, O°¡ Á¸ÀçÇÏ´Â °ÝÀÚ ±¸Á¶ÀÇ ¼±Çü ÃþÀ» º¸¿©ÁÖ¾ú´Ù. ÀϺΠ±×·ì¿¡¼­´Â Ca, P¿¡¼­ ¾à°£ÀÇ Â÷ÀÌ°¡ÀÖ¾ú´Ù. ÀÎÀå °­µµ´Â ¸ðµç ±×·ì¿¡¼­ À¯ÀÇÇÑ Â÷À̸¦ º¸¿´À¸¸ç(p<0.05), »ýºÐÇؼºÀº ¥â-TCP¸¦ ÇÔÀ¯ÇÑ ±×·ìÀÌ °¡Àå ºü¸¥ ºÐÇØÀ²À» º¸¿´´Ù. µû¶ó¼­, º» ¿¬±¸ÀÇ °á°ú´Â 3D ÇÁ¸°ÅÍ·Î Á¦ÀÛµÈ Èí¼ö¼º Â÷Æó¸·ÀÌ ÀÓ»ó »ç¿ëÀ» À§ÇÑ ´Ù¾çÇÑ ¹°¸®Àû ¹× »ýºÐÇؼº ¼ºÁúÀ» °¡Áö°í ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ Á¤º¸´Â °ü·Ã Á¦Ç°ÀÇ ÇâÈÄ °³¹ß ¹× Á¦Ç°ÀÇ ÀÓ»ó Àû¿ëÀ» À§ÇØ °í·ÁµÇ´Â »çÇ×À¸·Î À¯¿ëÇÒ °ÍÀ̶ó°í »ç·áµÈ´Ù.

The purpose of this study was to compare physical and biodegradable properties of 3D printed resorbable membranes that are used for guided tissue regenerations in periodontal tissues. Three types of 3D printed membranes (two types of non ¥â-TCP and one type of ¥â-TCP) were considered. The form and element compositions of 3D printed membranes were analyzed by field-emission scanning electron microscopy (FE-SEM) with energy-dispersive X-ray spectroscopy (EDS). Porosity and pore size were measured using Micro-CT. Also, tensile strength, biodegradability tests were performed. Statistical analyses were carried in tensile strength and cell viability test (p<0.05). The result of SEM images with EDS analyses showed linear layers of lattice structure with presence of C and O in all groups. There was a slight difference in Ca and P among some groups. Tensile strength was significantly different among all groups (p<0.05), and biodegradability showed that the group containing ¥â-TCP resulted in the fastest degradation rate. Therefore, the results of this study concluded that the 3D printed resorbable membrane has variable physical and biodegradable properties for clinical use, where such information would be useful to be considered for the future development of related products and clinical application of the products.

Å°¿öµå

3D ÇÁ¸°ÆÃ; Â÷Æó¸·; Ä¡ÁÖ Á¶Á÷ Àç»ý; ÀÎÀå °­µµ; »ýºÐÇؼº
3D Printing; Membrane; Guided tissue regeneration; Tensile strength; Degradation

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸

KCI